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Using an EHT type Hamiltonian the Heitler-London-VB treatment of the 
three-centre three-electron problem is simplified such that the interesting 
features of the potential hypersurfaces of arbitrary three-centre three-electron 
systems can be obtained simply from the knowledge of atomic orbital energies 
and overlap integrals. The method is applied to the hypersurfaces of the H 3 

system and extensions of the discussion of general radical reactions are 
indicated. 
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I. Introduction 

In a detailed comparison between the results of ab-initio and semiempirical model 
calculations for the H 3 system we deduced the requirements for a simple but 
reliable quantum chemical method to investigate radical reactions [1]. Based on 
the Hei t ler-London VB approach originally applied to the three-centre three- 
electron (3C3E) problem [2] by Bona~i6-Kouteck2~ et al. [3] we now present such 
a model which fulfills these requirements by taking into acocunt overlap and 
electron correlation and which therefore should be particularly suited to describe 
unpol~r radical reactions. From this model explicit expressions may be obtained 
which reproduce correctly the essential features of the potential energy hypersur- 
faces of a 3C3E model for arbitrary radical systems. 

2. Results and discussion 

In order to simplify the VB treatment of Ref. [3] we use an EHT type Hamiltonian 

~ "  = Z ,L~(O. (1) 
i 
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From the Matrix representation (~]~EH[cIgj) of  this Hamiltonian in the basis of 
the two covalent structures 

qb, = ([ 1231- [ 123])/~/2 (2) 

and 

�9 2 = (2ff23[-  ]1231- [ 1231)/4g (3) 

and from the Wolfsberg-Helmholtz expression [4] 

h~,. = �89 + h,.~.)S.,. (4) 

for the two-centre integrals ~.~ = (tz I~fr[ v) we obtain the secular equation 

[ a+rnz3S~3-�89162 ~32 (m,zS~2-m,3S~3)-Eo'2[= 0 

-~(mlzS~2-rn13S213)-Eo'2 A-m23S~3+�89 I 

(5) 
where 

A = hll + h22+ h33 --  h12S13S23 - h13h12S23 - h23SI2S13 (6) 

m.,, = K(h.~. + h,,,,) + h,,,, (7) 

and 

5e = S12Sl3S23 
0-1 = 1 ( 2 S 2 3  --  S22 --  S23)  ( 8 )  

2 2 
0" 2 = S12 --  S13.  

Neglecting 6 e, 0"1 and 0-2 [ 1, 3] the roots of the secular equation may be written as 

, =A• ...[_[~',2 m13 c2 ~ 
EllI ~/6 l \  m12 ~k'D12-- ml---~ ~ 

+ / m 2  3 [  $23 \2-~ 1/2 _ _  _mz____2 S~3~ ~ (9) 
\m12 m12 / J 

=A•  

The term e which in contrast to Ref. [3] contains no two-electron terms, modulates 
the term A which makes the energy of  both the lowest two doublet states increase 
with increasing overlap, i.e. with decreasing internuclear distances. This is to say, 
that maxima of  the ground state energy JEt = A + e and minima of the excited 
state energy En = A -  e occur at geometries where e has its minima. 

These geometries are obtained by setting Oe/(OS~,,)= 0 which yields 

S22=l ( m13 s23-q-m23 s23) (10) 
m12 m l 2  

S23=�89 (11) 
\ml3 m23 
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823 : ~ ~ - - ~  o12 T ~ - ~ :  o13 ] (12) 
23 23 / 

which all correspond to minima of e since O2e/(OS~)2>-O. Inserting Eq. (12) 
into Eq. (9) yields 

(qbllNE"l*,) = (d/'21.YCEH[dP2) = e .  (13) 

The structures qb~ and ~2 are degenerate and the splitting of the lowest two 
doublet states is entirely determined by the off-diagonal element 

(*,t)~En}*2) = @  (rn,2S~2 - m,3S,23). (14) 

Thus the ground state is the more stabilized the larger the difference m~aSZl2 - 
m~3S~3, i.e. the larger m~2S~2. Similar results may be obtained by inserting Eq. 
(10) or Eq. (1 1) into Eq. (9), but from these three sets of equations only two are 
linearly independent. 

These simple formulae may be tested by comparison with ab-initio VB-CI calcula- 
tions for the H3 system. The potential energy hypersurfaces of the ground and 
the first excited state as calculated using an independently scaled and floated 
minimal basis set (STO-4G [1 5]) with the geometrical parameters ~ and ~7 defined 
in Fig. 1 and R~2 kept constant at 2.0 a.u. are shown in Fig. 2a and b, whereas 
in Fig. 2c the curves a and b are given which are determined by 

= + ( l  5) 
2 1 2 

$23 = ~(S,2 + StZ3). (16) 

and which divide up the coordinate space into the regions A, B and C. 

Eq. (15) and Eq. (16) are obtained from Eq. (10) and Eq. (12) by setting 
m12 = m l  3 = m23 corresponding to the fact that for homonuclear 3C3E systems 
like H3 all one-centre energies h~,, are identical. 

It is evident that in Fig. 2c the curve b given by Eq. (16) describes surprisingly 
well the top of the potential ridge of the ground state hypersurface in Fig. 2a 

H 1 

I-t3 

lq 

Fig. 1. Coordinate space for the H a system 
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Fig. 2. Hypersurfaces of the n 3 system. Ab initio 
results (a) for the ground state and (b) for the 
first excited doublet state; (c) characteristic 
features obtained from the simplified model 
according to Eq. (15) and Eq. (16) 

and the corresponding well of  the excited state hypersurface in Fig. 2b, which 
extend from the upper  left hand corner (~: = 3.5, ~ = 0 a.u.) to the middle of  the 
lower edge (~: = 0, ~7 = 1.73 a.u.). The fact that according to Eq. (14) e decreases 
along this line is in good agreement with the increasing height of  the ridge in 
Fig. 2a. The shallow well which leads on the ground state surface Fig. 2a from 
~: = 2.7, r /=  0 a.u. to ~ = 0, r /=  1.4 a.u. lies in Fig. 2c between the curves a and b 
given by Eq. (15) and Eq. (16) and crosses these curves near the q-axis. Thus 
the main features of  the hypersurfaces in Fig. 2a and Fig. 2b are correctly 
reproduced by the model and its simple form lends itself particularly well for a 
clear physical interpretation of the process of  radical reactions. 

Thus, according to Eq. (13) the structures ~ l  and qb2 are degenerate along the 
curve b in Fig. 2c. In region A the ground state wave function is dominated by 
~2 which describes the triplet coupling of the electron spins at centres 2 and 3, 
while in regions B and C ~b~ dominates which describes their singlet coupling. 
Therefore curve b marks those geometries at which the characteristics of  the 
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ground and excited state are exchanged and the new bond is formed. The 
corresponding barrier occurs due to the electron recoupling and its height is 
determined by the amount of mixing between the two structures. 

The curve a in Fig. 2c is easily understood if instead ofqbl and ~2 the two structures 

~ = (11231 -11231)/x/2 (17) 

and 

O~ = (all 23t -1i23] - t1231)/46 (18) 

are used, which are connected to ~1 and d~ 2 by a unitary transformation. The 
ground state wave function is dominated in regions A and B by ~ ,  which 
describes the singlet coupling of the electron spins at the intially bounded centres 
1 and 2, and in region C by qb~, which describes their antibonding triplet coupling. 
Therefore curve a, along which these two structures are degenerate, marks those 
geometries at which the switchover from the bonding to the antibonding electron 
coupling occurs and the initial bond is broken. During addition reactions the 
curve b in Fig. 2c has to be crossed in order to form the new bond, but for 
non-perpendicular attacks the curve a is never touched, so that the initial bond 
is not affected; during the perpendicular attack on the other hand both curves 
have to be crossed simultaneously. Thus the transition state geometries may be 
described as follows: The initial bond remains essentially unperturbed in the 
linear attack while it will be stretched in the perpendicular attack in order to 
minimise the antibonding interaction between the electrons at centres 1 and 2. 

This interpretation is applicable also to "intramolecular" reactions such as the 
[1, 2]-migration. The transition state for the concerted mechanism is described 
by the minimum on the ~ axis in Fig. 2a and can therefore be reached only if 
the electrons of the original bond are decoupled. Thus the activation energy is 
high and an elongation of  the bond is necessary to stabilize the transition state. 
The two-step (dissociation and recombination) mechanism on the other hand is 
favoured because in both steps only the small barriers for the linear attack have 
to be overcome. 

Eq. (15) and Eq. (16) are explicit expressions for the curves a and b in Fig. 2c 
in terms of  overlap integrals only. These curves represent the characteristic 
features of the H 3 potential energy hypersurface which are sufficient for a 
discussion of all reactions of this system. Thus it is possible to estimate semiquanti- 
tatively the geometries and the relative energies of the various transition states. 
Such data are not available from the treatment in Ref. [3] where due to the 
two-electron terms no explicit expressions for geometry dependences could be 
obtained. 

For general 3C3E systems the parameter m~,~ of Eq. (7) deals with the special 
properties of  individual centres and Eq. (10) and Eq. (12) can be used to describe 
the potential energy hypersurface of the 3C3E problem in the same way as Eq. 
(15) and Eq. (17) were used for the n 3 system. According to Eq. (12) the curve 
b is shifted to smaller ~7- and f-values as m23 is larger than ml2 and ml3 and vice 
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versa. Corresponding statements are valid for Eq. (10) and Eq. (11). The results 
for such more general radical systems are discussed elsewhere [6]. 
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